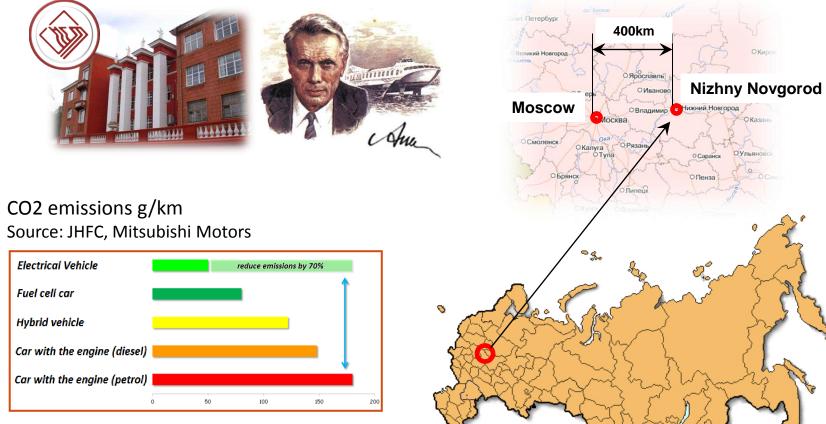


F2014-EPT-026

The Russian Federation Nizhny Novgorod State Technical University named after R.Y. Alekseev Transport Systems Institute

The Research of Indexes of Operational Characteristics of Electric LCV


Tumasov Anton - presenter

Blokhin Alexander, Kozlova Tatyana Shatilov Alexey, Yarzhemsky Alexey

FISITA 2014, The Netherlands, Maastricht – Wednesday, 4 June

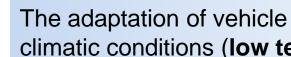
NNSTU – the best traditions of Soviet and Russian engineering school

Russia – is one the largest markets by sales volume of new commercial vehicles

EPT New energy Powertrain

Model	Modec	Edison	EcoDaily Electric 35S	Ford Transit Electric		
Max.Engine power kW (HP)	76,1 (102)	90 (120,6)	Nom. 30 (40) High 60 (81)	55 (280)		
Weight: Gross weight, t Payload, t	5,49 2,0	3,5 or 4,6 1,22 or 2,3	3,5	3,5 0,7		
Max. Speed , km/h	80	80	70	120		
Tyres/ wheels	205/75R17,5	205/75R16 or 185/75R16	195/75R16	205/65R16 , 195/70R15		
Types of battery	Custom	Lithium Ion Iron Phosphate (Li Fe PH ₄)	sodium-nickel chloride battery	Lithium ion		
Battery capacity kWh	60	40	n/a	28		
Transmission	Continiously variable transmission (CVT)					
Single charge distance km	160	160	90-120	130		

2


3

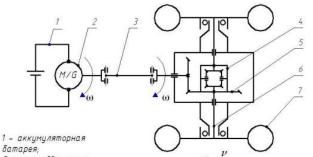
<u>″</u>」

Space-saving and unitized chassis of electric vehicle for the wide range of "vehicle family"

High level of **electric safety** and reliability, that minimize the probability of a shock hazard and a fire (in case of road accident)

Multipurpose modular intelligent operational system for the electric vehicle, that could be used for different modifications of the EV

The adaptation of vehicle parts for Russian severe climatic conditions (**low temperatures**)



R&D activity:

- Chassis design
- Development of mounting parts
- Development of electric operational system
- Development of software
- Development of mechatronic parts and sensors (radars, positioning systems)

5 атарея; 2—электродвигатель; 3-карданная передача; 4-дифференциал; 5-главная передача; 6-полуось; 7-колесо.

F2014-EPT-026

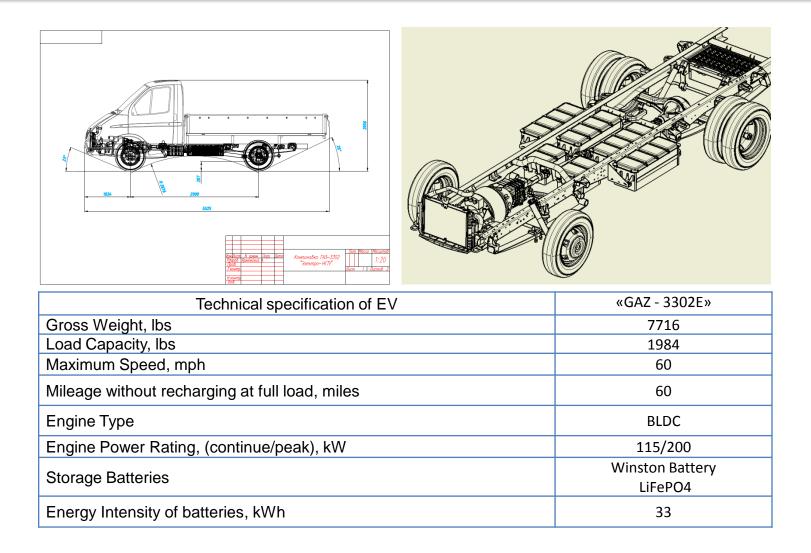
EPT New energy Powertrain

Main theoretical haulage speed properties

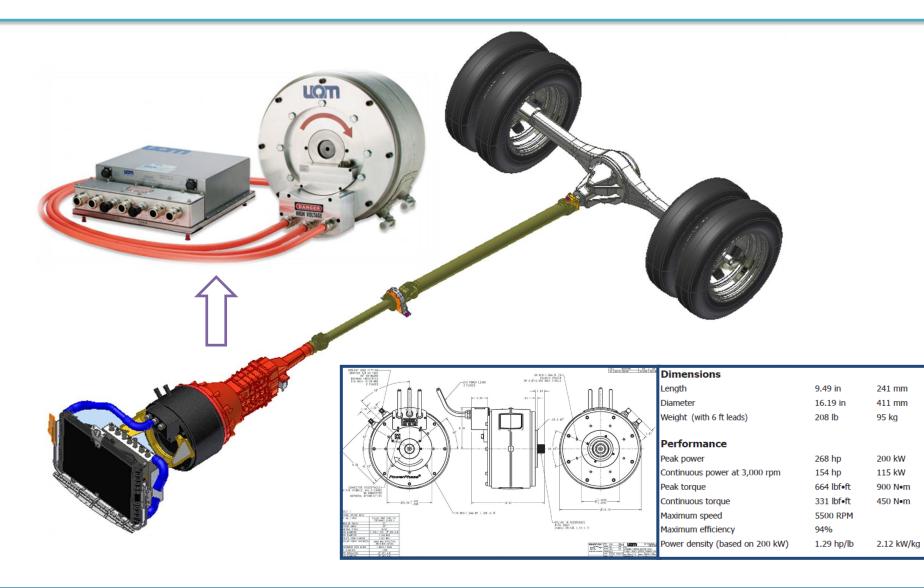
	Type of electric engine							
Characteristics	Siemens 1PV5135- 4ws24	Siemens 1PV5135- 4ws28	AZD AC55	AZD AC 90	UQM 125	Remy HVH 250	UQM PP 200	UMZ- 4216
Max. Speed ,km/h	95	115	80	90	96	86	122	115
Max. Climb %	34	25	23	25	23	23	36	34
Acceleration time to 60 km/h	6,7	8,5	18,0	9,7	8,7	10,8	6,0	12,4
Acceleration time to 80 km/h	10,2	12,5		24,0	12,5	21,0	9,0	21

Energy consumption of the accumulator battery $W = W_c - W_r = \frac{\int P_{s_tr} dt}{\eta_{s_tr} \cdot \eta_{c_disch}} - \eta_{c_ch} \cdot \eta_{s_gen} \cdot \int P_{s_gen} dt$ Theoretical run on a single charge in a city mode of movement: L=160 km

where ηc – the utilization of the battery (accumulator); η_c – motor efficiency; P_s – power on the motor shaft, W_r – energy recovery, Wc – total energy consumption in the urban cycle. Additional indices, respectively, for the motor: tr – traction mode; gen – generator mode, for battery: ch – charging mode (recovery), disch – discharging mode (traction).

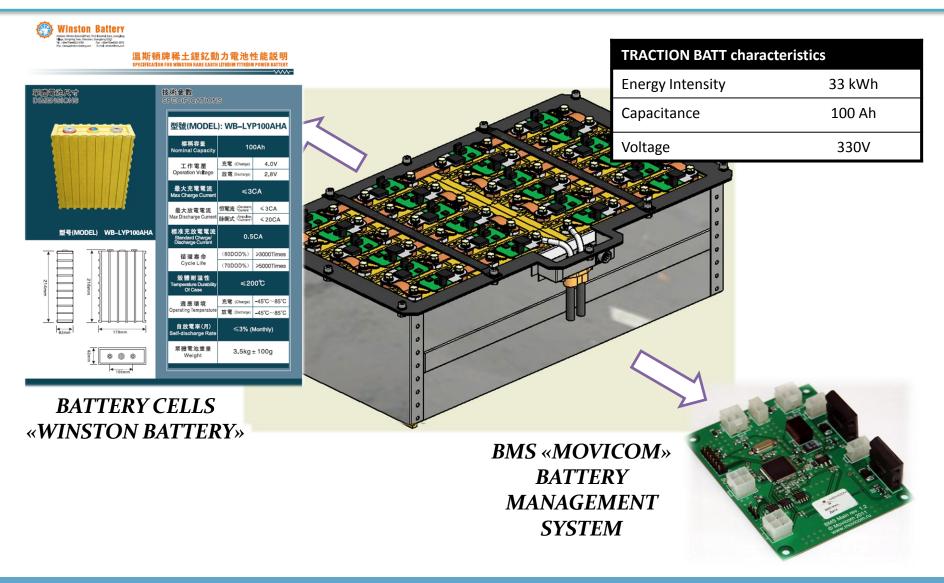

EPT New energy Powertrain

Gross weight, kg	3500		
Payload (no less than), kg	900		
Chasssis weight(with driver) no more than,kg	2200		
	Permanent		
Engine type	magnet		
Engine type	synchronous		
	motor		
Max power, kW	200		
Max Turning torque, Nm	850		
Max rotating rate, r.p.m	5700		
	Lithium Iron		
Accumulators	Phosphor		
Accumulators	Fe PH ₄ ,		
	56 kWh		
Max speed, km/h	100		
Max climb, %	36		
Acceleration time to 80 km/h, sec	9,0		
Single charge distance, with a full load ,summertime, km	145		



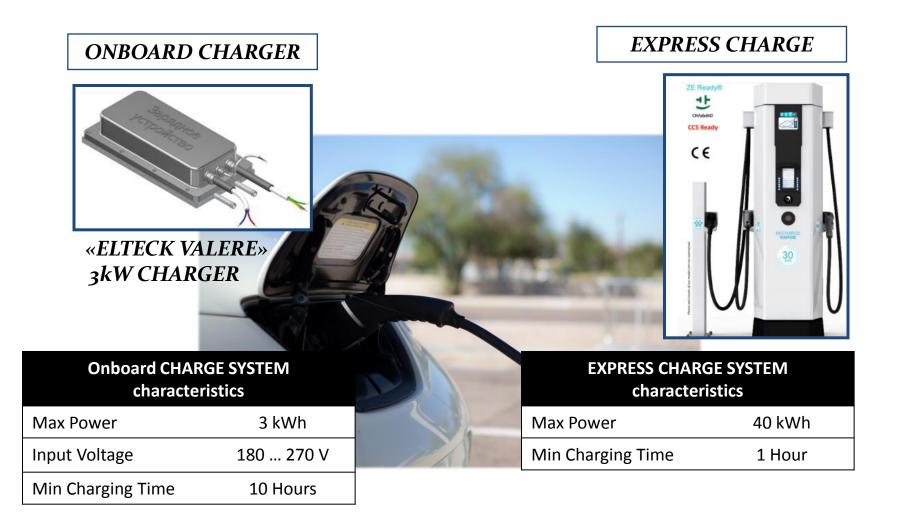
EPT New energy Powertrain

LCV electro chassis design (variant 2) – electric drive



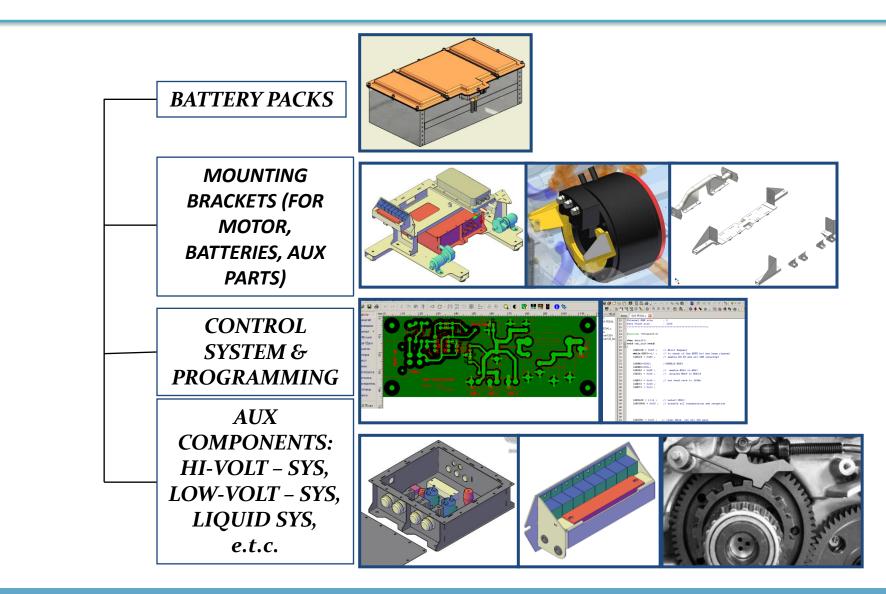
F2014-EPT-026

EPT New energy Powertrain



LCV electro chassis design (variant 2) – traction battery

EPT New energy Powertrain



EPT New energy Powertrain

LCV electro chassis design (variant 2) – self-development component

EPT New energy Powertrain

- The analysis of technical characteristics of the best world analogs of the electric LCV was carried out. Values of indicators of the main operational characteristics were established: single charge distance in summertime 130 - 160 km. the maximum speed - 80-100 km/h, loading capacity -0,7 - 1,2 t.
- 2. NGTU of R. E. Alekseev (Russia)has developed and made the experimental sample of the electric LCV car which technical solutions are protected by patents of the Russian Federation for utility models.
- 3. As a result of theoretical and pilot studies it is established that on indicators of dynamics and speed properties the electric car "NGTU-Elektro" are at the level of a pilot model with the gasoline engine and doesn't concede to the best world analogs of electric cars of this class. A single charge distance and the loading capacity of the vehicle are at the level of the considered world analogs.
- The conducted researches allowed to estimate economic efficiency of use of LCV cars in Russia in comparison with diesel and petrol analogs. The payback period of the LCV cars will make (depending on the initial cost of vehicles) no more than 7-10 years.

F2014-LWS-040

The Russian Federation Nizhny Novgorod State Technical University named after R.Y. Alekseev Transport Systems Institute

Thank you for attention!

603950, Russia, Nizhny Novgorod NNSTU n.a. R.Y. Alekseev Minin str., 24 www.en.nntu.ru www.its.nntu.ru

Transport Systems Institute Anton Tumasov – vice-director for development +7-905-19-20-576 <u>anton.tumasov@nntu.nnov.ru</u>